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Abstract. Dirac equation is reformulated in terms of real local observables, which are mean values
(Φ(x)OΦ(x)) of the wave function Φ(x). The quadrivector current is shown to be a function of the potential
vector and of other local observables. The equations describe the evolution of a four dimensional system
T, X, Y, Z, and of two scalars, in the coordinate system ct, x, y, z. The current is proportional to the
T vector. The Z vector is associated with the spin of the electron. Energy and gauge transformations
correspond to rotations in the plane (X, Y). In the presence of a static field, the (real) solutions of the
equations appear as eigenfunctions associated with energy eigenvalues.

PACS. 03.65.Bz Foundations, theory of measurement, miscellaneous theories (including Aharonov Bohm
effect, Bell inequalities, Berry’s phase) – 03.65.Pm Relativistic wave equations – 05.30.-d Quantum sta-
tistical mechanics

1 Introduction

Physicists have known for years that a representation of
the Dirac equation in terms of local observables is possible
[1,2] but complicated, and here a much simpler represen-
tation is derived. More explicitly, relations involving only
quantities of the form (Φ(x)OΦ(x)), where x represents
the local coordinates and where O is a product of γj ’s,
can be found, and these relations are equivalent to the
original Dirac equation. In this way, a closed set of new
equations has been obtained, a possibility which is not at
all obvious and which does not generally occur in statisti-
cal mechanics. Unfortunately, these equivalent expressions
are rather complicated, since the phase of the wave func-
tion and the corresponding gauge transformations, are not
observables in a strict sense, and have to be eliminated.
However the present article will show that this compli-
cation can be avoided and that local observables can be
introduced and gauge transformations can be retained, si-
multaneously. Actually, before dealing with quantum me-
chanics, we show, in the first section, how the same idea
applies in classical physics. In this way, the reader will
immediately understand our point of view.

What are the motivations of this research? Our far
aim is of course to find a correct interpretation of quan-
tum mechanics, but we shall not deal with this matter
here. However, while remaining strictly orthodox, this ar-
ticle provides a much clearer view of the physics of rel-
ativistic quantum mechanics, in particular by giving an
interpretation of spin and of the so called “Schrödinger
Zitterbewegung.”

2 Classical equations and transformation

In the following, we assume that τ = ct and that gττ =
−gxx = −gyy = −gzz = 1.

The classical motion of an electron in an electromag-
netic field is given by:

m(dvk/ds) = mvjδjvk = e Fkjv
j (1)

where vj is a component of the velocity of the electron (in
four dimensions), e is the charge of the electron and ds is
the differential of the proper time (an invariant distance
in space-time). The electromagnetic field Fjk is given in
terms of the potential vector Ak by

Fjk = ∂jAk − ∂kAj . (2)

On the other hand, we have

vjvj = c2. (3)

Equations (1, 3) define the motion of the electron: in a
form which we call the Galileo-Newton formalism. By com-
bining these equations, we can write equation (1) as fol-
lows

vj [m(∂jvk − ∂kvj) + e(∂jAk − ∂kAj)] = 0. (4)

The preceding equation suggests the following one

m(∂jvk − ∂kvj) + e(∂jAk − ∂kAj) = 0. (5)

This equation entails equation (4) but is not equivalent to
it, since it defines a field and a special one (and not only
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a trajectory). This approach corresponds to the Hamilton-
Jacobi formalism. The inequivalence of the two formalisms
is not generally emphasized but can be verified by reading
carefully classical books [3]. Moreover it has been thor-
oughly discussed by the author elsewhere [4]. Fortunately,
the classical limit of quantum equations correspond with
the Hamilton-Jacobi formalism and not with the Galileo-
Newton one [4]. Therefore, we must take equation (5) as
a starting point.

Integrating it, we obtain

mvk = −e(Ak − ∂kχ) (6)

where χ is an arbitrary function equivalent to equation
(5). We remark immediately that this equation deals
with physical quantities but is simultaneously invariant by
gauge transformations. Equations (6) and (3) can now be
considered as the basic equations which define the motion
of an electron in an electromagnetic field. Consequently,
equation (6) must be generalized in the quantum case and
this aim will be reached in the following

3 Kinetic framework associated with an
electron in relativistic quantum mechanics

The algebra of the γj constitutes the basis of the Dirac
theory. Local observables i.e. tensors are associated with
the elements of this algebra. Thus, before considering dy-
namics, we must recall the structure of these tensors and
their relationships. The symbols γj , with j = τ, x, y, z,
represent 4 × 4 matrices. We have

γjγk + γkγj = 2gjkI

(γτ )+ = γτ (γx)+ = −γx

(γy)+ = −γy (γz)+ = −γz (7)

where I is the unit matrix.
From these matrices, we deduce

γ5 = γτγxγyγz (with (γ5)2 = −1) (8)

and we set

σjk = (i/2)(γjγk − γkγj)
′σjk = γ5σ

jk = (1/2)εjklnσln (9)

where εjkln is completely antisymmetric and ετxyz = 1.
Let us now introduce a 4-component wave vector Φ(x)
and its associated Φ(x)=Φ∗(x)β, where β is a 4 × 4 matrix
defined by

(γj)+β = βγj (β = γτ ). (10)

With the help of these wave vectors, we define real lo-
cal observables by mean values of the form (Φ(x)OΦ(x))

where O is one of the 16 operators belonging to the alge-
bra. More precisely, we set

P = (ΦΦ)

Jj = (ΦγjΦ)

Sjk = (ΦσjkΦ)

Kj = (Φ (−iγ5γ
j)Φ)

Q = (Φγ5Φ). (11)

We shall also use the notation

′Sjk = (Φ ′σjkΦ). (12)

One can easily prove the following relations

JjJj = −KjKj = P 2 +Q2

KjJj = 0 (13)

and

SjnSjn = 2(P 2 −Q2)

JjS
jn = −QKn

KjS
jn = −QJn

Sjn
′Sjn = 4 PQ

Jj
′Sjn = PKn

Kj
′Sjn = PJn. (14)

P and Q are invariant, Jj is a component of a timelike
vector J, and Kj a component of a spacelike vector K.
Moreover, Sjn and ′Sjn are antisymmetric tensors. Using
(13), we see that we can associate a timelike unit vector
T with J and a spacelike unit vector Z with K, by setting

Jj = (P 2 +Q2)1/2T j

Kj = (P 2 +Q2)1/2Zj . (15)

These vectors are orthogonal; we have

T ·T = 1 K ·K = −1 T ·K = 0. (16)

We can now complete the system by introducing two
spacelike unit vectors, X and Y, which are orthogonal
to each other and orthogonal to T and Z.

X ·X = −1 Y ·Y = −1 X ·Y = 0

X ·T = 0 X · Z = 0 Y ·T = 0 Y · Z = 0.
(17)

For the time being, vectors X and Y are not completely
defined, (only the plane (X,Y) is defined), and therefore
we may choose also for X and Y, vectors TX and TY with

TX = X cos δ −Y sin δ
TY = X sin δ + Y cos δ (18)

where δ is arbitrary. This undefined δ is not an observable
and will be interpreted later on, as corresponding to the
phase of the wave function.
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Now, equations (14) can be expressed in the following
form (which can also be obtained in a specific representa-
tion)

Sjk = P (XjY k − Y jXk)−Q(T jZk − ZjT k)
′Sjk = Q(XjY k − Y jXk) + P (T jZk − ZjT k). (19)

Thus, we have eight parameters, two for P and Q and six
for T, Z, X and Y, including the unphysical δ of equation
(18). These degrees of freedom correspond to the eight
parameters of Φ (four complex parameters) including the
unphysical phase of Φ.

4 Dynamical equations and observables

The relativistic motion of an electron of mass m and
charge e, in an electromagnetic field, can be described by
means of the Dirac equation

γj(~ ∂j + i ec−1Aj)Φ+ imcΦ = 0 (20)

where A is the potential vector. Its conjugate writes

(~ ∂jΦ− i ec−1AjΦ)γj − imcΦ = 0. (21)

Here and everywhere in the following, we write Φ and Φ
for Φ(x) and Φ(x) (the same coordinates x appear in both
cases).

First, it is easy to find a conservation equation. Let us
multiply equation (20) by Φ to the left and equation (21)
by Φ to the right. By adding the resulting equalities, we
obtain

∂j(Φγ
jΦ) = 0

which writes

∂jJ
j = 0. (22)

This conservation law appears as a typical statistical me-
chanics equation [5].

We can now calculate J. Let us multiply (20) by−iΦ γk
to the left and (21) by iγkΦ to the right. By adding these
equalities, we obtain

mc(ΦγkΦ) + (~/2)∂j(ΦσjkΦ)− ec−1Ak(ΦΦ)

− ~(i/2)[(Φ∂kΦ) − (∂kΦΦ)] = 0

which we write

mcJk = −(~/2)∂jSjk − ec
−1AkP − ~Ck (23)

with

Ck = −(i/2)[(Φ∂kΦ) − (∂kΦΦ)] (24)

where C is not an observable and will be transformed
later.

The preceding calculation gives us four equations (23);
we need four other ones, since we have eight parameters.

Let us multiply equation (20) by −Φγ5γk to the left and
equation (21) by γkγ5Φ to the right. By adding these
equalities, we obtain

(~/2)∂j(Φ(−iγ5σjk)Φ) + ec−1Ak(Φγ5Φ)

− ~(i/2)[(Φγ5∂kΦ)− (∂kΦγ5Φ) = 0

which we write

−(~/2)∂j ′Sjk − ec
−1AkQ− ~Dk = 0 (25)

with

Dk = −(i/2)[(Φγ5∂kΦ)− (∂kΦγ5Φ)] (26)

where D is not an observable and will be transformed
later.

The constructed equations (23) and (25) (and also
(22)) are not unique, because by multiplying (20) by ΦO
and (21) by OΦ where O is any observable, we could find
many more equations, but they can be considered as suffi-
cient and possessing the dynamical content of Dirac equa-
tion. These new equations are written in terms of observ-
ables and of quadrivectors C and D which will now be
expressed in terms of P, Q, T, X, Y and Z.

5 Transformation of the quadrivectors
C and D

Ck and Dk are not observables. However they can be ex-
pressed in terms of partial derivatives of observables, and
therefore, we must calculate ∂kΦ. For this purpose, let us
examine the connection which exists between a transfor-
mation of the wave function Φ (Φ(x) → Φ(x + δx)), and
the corresponding transformation of P, Q, T, X, Y and
Z.

Firstly, an infinitesimal Lorentz transformation of the
four vectors T, X, Y and Z is defined by the six com-
ponent antisymmetric infinitesimal tensor δajk. Thus an
arbitrary vector B transforms as follows

δBj = δajnBn. (27)

The vector B can be equal to T, X, Y or Z. Thus, as
can be easily shown, transformation (27) is induced by
the corresponding transformation of Φ and Φ;

δΦ = −(i/4)σjnΦ δajn

δΦ = (i/4)Φ σjn δa
jn. (28)

In this transformation, P and Q remain invariant.
However, the transformation of Φ may also lead to

a modification of the invariants P and Q. An infinites-
imal Lorentz transformation depends on six parameters
whereas δΦ depends on eight parameters. Therefore we
introduce the infinitesimal additional transformation

δΦ = Φ δb+ γ5Φ δc

δΦ = Φ δb+ Φγ5 δc (29)
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which leaves T, X, Y and Z invariant but which modifies
P and Q, as shown below. We have

δP = 2(P δb+Q δc)

δQ = 2(Q δb− P δc) (30)

and also

δJj = 2Jj δb

δKj = 2Kj δb. (31)

The term δΦ = Φ δb corresponds to a simple swelling; thus
X, Y, Z and T remain invariant. The term δΦ = γ5Φ δc is
more complicated: it changes the ratio of P and Q leaving
P 2 +Q2 invariant; according to (31), J and K (i.e. T and
Z) remain invariant in the transformation, and also the
plane (X, Y) which is orthogonal to these vectors.
By combining equations (28, 29), we get

δΦ = −(i/4)σjnΦ δajn + Φ δb+ γ5Φδc

δΦ = (i/4)Φσjn δa
jn + Φ δb+ γ5δc (32)

and by replacing δ by ∂k

∂kΦ = −(i/4)σjnΦ ∂ka
jn + Φ ∂kb+ γ5Φ ∂kc

∂kΦ = (i/4)Φσjn ∂ka
jn + Φ ∂kb+ Φγ5 ∂kc. (33)

Putting these results in equations (24, 26), we obtain

Ck = −(1/4)(ΦσjnΦ) ∂ka
jn = (1/4)Sjn∂ka

jn

Dk = −(1/4)(Φγ5σjnΦ) ∂ka
jn = (1/4)′Sjn ∂ka

jn. (34)

Let us now transform the preceding equations by replacing
Sjn and ′Sjn by the expressions given in equations (19)

Ck=−(1/4)[P (XjYn − YjXn)−Q(TjZn − ZjTn)] ∂ka
jn

Dk=−(1/4)[Q(XjYn − YjXn) + P (TjZn − ZjTn)] ∂ka
jn.

(35)

Let us now replace δ by ∂k in equation (27)

∂kB
j = ∂ka

jnBn. (36)

By using this expression for X, Y, Z, and T in equation
(35), we obtain

Ck = −(1/4)[P (Xj∂kY
j − Yj∂kX

j)

−Q(Tj∂kZ
j − Zj∂kT

j)]

Dk = −(1/4)[Q(Xj∂kY
j − Yj∂kX

j)

+ P (Tj∂kZ
j − Zj∂kT

j)]. (37)

Then, we remark that, according to equations (17), we
have

Xj∂kY
j + Yj∂kX

j = 0

Tj∂kZ
j + Zj∂kT

j = 0 (38)

and we get finally

Ck = −(1/2)[PXj∂kY
j −QTj∂kZ

j ]

Dk = −(1/2)[QXj∂kY
j + PTj∂kZ

j ]. (39)

These quantities are not observables but nevertheless they
are expressed in terms of T, Z, X and Y, and this is
exactly what we wanted.

6 Summary

Thus we transformed Dirac equation into relations involv-
ing only P , Q, T, X, Y and Z, (that is to say involving
8 functions).

We have the conservation equation (22)

∂jJ
j = 0

where J is given by equation (23)

mcJk = −(~/2)∂jS
jk − ec−1AkP − ~Ck

and by equation (25)

−(~/2)∂j
′

Sjk − ec
−1AkQ− ~Dk = 0

where Jk, Sjk, ′Sjk, Ck and Dk are expressed as follows
in terms of P , Q, T, X, Y and Z (Eqs. (15, 19, 37))

Jj = (P 2 +Q2)1/2T j (40)

Sjk = P (XjY k − Y jXk)−Q(T jZk − ZjT k)
′Sjk = Q(XjY k − Y jXk) + P (T jZk − ZjT k)

Ck = −(1/2)[PXj∂kY
j −QTj∂kZ

j ]

Dk = −(1/2)[QXj∂kY
j + PTj∂kZ

j ] (41)

These equations are invariant for gauge transformations
of the form (see Eq. (17))

Ak → Ak − (~c/e)∂kα(x) (42)

Xj → Xj cos[2α(x)] − Yj sin[2α(x)]

Yj → Xj sin[2α(x)] + Yj cos[2α(x)] (43)

which entails (since XjX
j = −1)

Ck → Ck + P ∂kα(x)

Dk → Dk +Q ∂kα(x). (44)

Remarks

1. Here we consider e as the elementary charge (e < 0 for
an electron, e > 0 for a positron). Therefore it does
not hurt our common sense to find e explicitly in an
expression (Eqs. (23, 25)) which involves an external
field (the potential vector A). Thus, there is no diffi-
culty in defining α(x) (a number), as we did.

2. For a Dirac wave function, we note that we have always
Jτ > 0.

7 Electron in a time independent vector
potential: energy level

When the potential vector does not depend on time and
vanishes at infinity, the time dependence of the various
symbols with respect to the energy can be easily obtained.
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We see immediately from definition (11) that the observ-
ables are time and energy independent. On the other hand,
from definitions (24, 26), we see that Ck and Dk are also
time independent and that the contribution of the energy
can be separated by writing (see Eqs. (24, 26))

Cj = ◦Cj − δjτEP

Dj = ◦Dj − δjτEQ (45)

which correspond to

Xj = ◦Xj cos(−2Et)− ◦Yj sin(−2Et)

Yj = ◦Xj sin(−2Et) + ◦Yj cos(−2Et). (46)

The energy is an eigenvalue which is determined by the
solutions of the equations.

8 Application: plane waves

For plane waves, all observables are constants. Therefore
Tj = constant and the plane (X, Y ) remains fixed. Ac-
cordingly Zj = constant. The equations reduce to

mcJk = −~Ck
Dk = 0

JkJ
k = P 2 +Q2 (from Eq. (40)). (47)

On the other hand

Ck = −(P/2)Xj∂kY
j

Dk = −(Q/2)Xj∂kY
j . (48)

The second equation (47) and the second equation (48)
lead to

Q = 0

and consequently the third equation (47) reduce to

JkJ
k = P 2. (49)

Let us set

Xn = ◦Xn cos(−2kjx
j)− ◦Yn sin(−2kjx

j)

Yn = ◦Xn sin(−2kjx
j) + ◦Yn cos(−2kjx

j) (50)

where ◦Xn and ◦Yn are constant. From these assumptions
and from the first equation (47), we deduce

Cj = −P kj

and by combining this result with the first equation (47)

mcJj = ~kjP = pjP

where pj is a component of the momentum and where
pτ = E/c. By putting this value of Jk in equation (49),
we obtain (with p2 = p2

x + p2
y + p2

z)

(E2/c2)− p2 = m2c2 or E = mc2(1 + p2/m2c2)1/2.

Thus for a given value of p, we have two opposite values
of E, a positive and a negative one. By rotation of the
(X,Y ) plane, we also obtain two opposite values of the
spin.

9 Conclusion

In the preceding sections, the four complex components of
Φ have been eliminated in favour of eight real local observ-
ables, and simple relations between these quantities have
been found. From a conceptual point of view, the advan-
tage is very great. Quantum mechanics seems to belong to
the domain of statistical mechanics. From a practical point
of view, the superposition principle seems to be lost (it is
occulted), since observables are bilinear combinations of
Φ and Φ. This difficulty may be considered as a serious
drawback, but it should be realized that this superposi-
tion property is not essential (but very important), since
it does not appear in classical mechanics.

From another point of view, the new equations may be
more general than the Dirac equation. Indeed, such a situ-
ation generally occurs when, in equations, explicit expres-
sions replace matrices, since these matrices correspond to
special representations. Thus these new equations (which
in some way look like Maxwell equations) may very well
describe the motion of other particles and not only that
of spin 1/2 particles.

Note that the wave function Φ and the matrices γj
(of Dirac) have many different representations. On the
contrary, equations obtained here are unique, and this is
another advantage.

Thus, this article opens many questions which hope-
fully will be elucidated in further publications.
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